Density Varies Continuously in L1 With Respect to Dynamics Uniformly Expanding Maps

[1]

V. Baladi, Positive Transfer Operators and Decay of Correlations, volume 16 of Advanced Series in Nonlinear Dynamics. World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812813633.

[2]

V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ foliations, Algebraic and Topological Dynamics, volume 385 of Contemp. Math., pages 123–135. Amer. Math. Soc., Providence, RI, 2005. doi: 10.1090/conm/385/07194.

[3]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1453-1481.  doi: 10.1016/j.anihpc.2009.01.001.

[4]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone-hyperbolic maps, J. Mod. Dyn., 4 (2010), 91-137.  doi: 10.3934/jmd.2010.4.91.

[5]

V. Baladi and G. Keller, Zeta functions and transfer operators for piecewise monotone transformations, Comm. Math. Phys., 127 (1990), 459-477.  doi: 10.1007/BF02104498.

[6]

V. Baladi and C. Liverani, Exponential decay of correlations for piecewise cone hyperbolic contact flows, Comm. Math. Phys., 314 (2012), 689-773.  doi: 10.1007/s00220-012-1538-4.

[7]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier (Grenoble), 57 (2007), 127-154.  doi: 10.5802/aif.2253.

[8]

V. Baladi and M. Tsujii, Spectra of differentiable hyperbolic maps, Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., E38, pages 1–21. Friedr. Vieweg, Wiesbaden, 2008.

[9]

V. Baladi and L.-S. Young, On the spectra of randomly perturbed expanding maps, Comm. Math. Phys., 156 (1993), 355-385.  doi: 10.1007/BF02098487.

[10]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973.  doi: 10.1088/0951-7715/15/6/309.

[11]

F. Bonetto, N. Chernov, A. Korepanov and J.-L. Lebowitz, Spatial structure of stationary nonequilibrium states in the thermostatted periodic Lorentz gas, J. Stat. Phys., 146 (2012), 1221-1243.  doi: 10.1007/s10955-012-0444-7.

[12]

R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys., 69 (1979), 1–17. With an afterword by Roy L. Adler and additional comments by Caroline Series. doi: 10.1007/BF01941319.

[13]

L. A. Bunimovich, Ya. G. Sinai and N. Chernov, Statistical properties of two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk, 46 (1991), 43–92,192. doi: 10.1070/RM1991v046n04ABEH002827.

[14]

O. Butterley, An alternative approach to generalised BV and the application to expanding interval maps, Discrete Contin. Dyn. Syst., 33 (2013), 3355-3363.  doi: 10.3934/dcds.2013.33.3355.

[15]

O. Butterley, Area expanding ${C}^{1+\alpha}$ suspension semiflows, Comm. Math. Phys., 325 (2014), 803-820.  doi: 10.1007/s00220-013-1835-6.

[16]

N. Chernov and A. Korepanov, Spatial structure of Sinai-Ruelle-Bowen measures, Phys. D, 285 (2014), 1-7.  doi: 10.1016/j.physd.2014.06.006.

[17]

N. Chernov and R. Markarian, Chaotic Billiards, Volume 127 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006. doi: 10.1090/surv/127.

[18]

N. Chernov and H.-K. Zhang, On statistical properties of hyperbolic systems with singularities, J. Stat. Phys., 136 (2009), 615-642.  doi: 10.1007/s10955-009-9804-3.

[19]

W. J. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps, Ergodic Theory Dynam. Systems, 22 (2002), 1061-1078.  doi: 10.1017/S0143385702000627.

[20]

M. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc., 360 92008), 4777–4814. doi: 10.1090/S0002-9947-08-04464-4.

[21]

M. Demers and H.-K. Zhang, Spectral analysis of the transfer operator for the Lorentz gas, J. Mod. Dyn., 5 (2011), 665-709.  doi: 10.3934/jmd.2011.5.665.

[22]

M. Demers and H.-K. Zhang, A functional analytic approach to perturbations of the Lorentz gas, Comm. Math. Phys., 324 (2013), 767-830.  doi: 10.1007/s00220-013-1820-0.

[23]

M. Demers and H.-K. Zhang, Spectral analysis of hyperbolic systems with singularities, Nonlinearity, 27 (2014), 379-433.  doi: 10.1088/0951-7715/27/3/379.

[24]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, 26 (2006), 189-217.  doi: 10.1017/S0143385705000374.

[25]

S. Gouëzel and C. Liverani, Compact locally maximal hyperbolic sets for smooth maps: Fine statistical properties, J. Differential Geom., 79 (2008), 433-477.  doi: 10.4310/jdg/1213798184.

[26]

F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z., 180 (1982), 119-140.  doi: 10.1007/BF01215004.

[27]

H. Hu and S. Vaienti, Absolutely continuous invariant measures for non-uniformly expanding maps, Ergodic Theory Dynam. Systems, 29 (2009), 1185-1215.  doi: 10.1017/S0143385708000576.

[28]

H. Hu and S. Vaienti, Lower bounds for the decay of correlations in non-uniformly expanding maps, Ergodic Theory and Dynamical Systems, 2017, 1–35. doi: 10.1017/etds.2017.107.

[29]

A. Katok, J.-M. Strelcyn, F. Ledrappier and F. Przytycki, Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, volume 1222 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0099031.

[30]

G. Keller, On the rate of convergence to equilibrium in one-dimensional systems, Comm. Math. Phys., 96 (1984), 181-193.  doi: 10.1007/BF01240219.

[31]

G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete, 69 (1985), 461-478.  doi: 10.1007/BF00532744.

[32]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481–488 (1974). doi: 10.1090/S0002-9947-1973-0335758-1.

[33]

T. Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc., 235 (1978), 183-192.  doi: 10.1090/S0002-9947-1978-0457679-0.

[34]

C. Liverani, On contact Anosov flows, Ann. of Math. (2), 159 (2004), 1275-1312.  doi: 10.4007/annals.2004.159.1275.

[35]

C. Liverani, A footnote on expanding maps, Discrete Contin. Dyn. Syst., 33 (2013), 3741-3751.  doi: 10.3934/dcds.2013.33.3741.

[36]

C. Liverani, Multidimensional expanding maps with singularities: A pedestrian approach, Ergodic Theory Dynam. Systems, 33 (2013), 168-182.  doi: 10.1017/S0143385711000939.

[37]

M. Rychlik, Bounded variation and invariant measures, Studia Math., 76 (1983), 69-80.  doi: 10.4064/sm-76-1-69-80.

[38]

B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israel J. Math., 116 (2000), 223-248.  doi: 10.1007/BF02773219.

[39]

D. Thomine, A spectral gap for transfer operators of piecewise expanding maps, Discrete Contin. Dyn. Syst., 30 (2011), 917-944.  doi: 10.3934/dcds.2011.30.917.

[40]

M. Tsujii, Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, 23 (2010), 1495-1545.  doi: 10.1088/0951-7715/23/7/001.

[41]

M. Viana, Lecture Notes on Attractors and Physical Measures, volume 8 of Monografías del Instituto de Matemática y Ciencias Afines [Monographs of the Institute of Mathematics and Related Sciences]. Instituto de Matemática y Ciencias Afines, IMCA, Lima, 1999. A paper from the 12th Escuela Latinoamericana de Matemáticas (Ⅻ-ELAM) held in Lima, June 28–July 3, 1999.

[42]

S. Wong, Hölder continuous derivatives and ergodic theory, J. London Math. Soc. (2), 22 (1980), 506-520.  doi: 10.1112/jlms/s2-22.3.506.

eilanddideenable.blogspot.com

Source: https://www.aimsciences.org/article/doi/10.3934/dcds.2019203

0 Response to "Density Varies Continuously in L1 With Respect to Dynamics Uniformly Expanding Maps"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel